Rabu, 02 November 2011

ekofistumb..

1. a) tanaman c3 merupakan tanaman yang hidup pada lingkungan subtropis dimana intensitas cahaya yang dibutuhkan untuk fotosintesis tidak terlalu tinggi namun juga tidak terlalu rendah. Pada grafik dapat dilihat semakin tinggi intensitas cahaya maka asimilasi yang dihasilkan dari proses fotosintesis akan menurun. Hal ini dapat disebabkan karena pada tanaman c3 memiliki kompensasi cahaya yang rendah sehingga apabila tanaman c3 mendapatkan intensitas cahaya yang tinggi maka akan mengakibatkan tanaman menjadi stress yang dapat berdampak salah satunya terhadap stomata. Stomata dapat menutup sehingga laju fotoresipirasi akan meningkat. Meningkatnya fotorespirasi akan menyebabkan kompetisi antara co2 dan 02 pada tanaman dalam berikatan dengan enzim rubisco. Kompetisi ini akan mempengaruhi proses fotosintesis pada tanaman c3.
b) pada tanaman c4, merupakan tanamann yang hidup pada lingkunan tropis dimana tanaman c4 tahan terhadap intensitas cahaya tinggi. Pada tabel dapat dilihat bahwa semakin tinggi intensitas cahaya makan laju asimilasi dari proses fotosentesis akan ikut meningkat. Hal ini dikarenakan pada tanaman c4, proses fotosintesisnya terbagi menjadi 2 tempat yaitu sel mesofil (reaksi terang) dan sel seludang pembuluh (reaksi gelap). Co2 sebagai bahan baku fotosintesis di tambat oleh PEP di mesofil yang kemudian ditransfer ke sel seludang pembuluh dimana co2 tadi akan diikat kembali oleh rubisco. Pada sel seludang pembuluh, konsentrasi c02 sangat tinggi sehingga enzim rubisco hanya akan menambat co2 (tidak terjadi kompetisi antara o2 danco2 dalam mengikat rubisco), hal ini mnyebabkan fotorespirasi yang terjadi sangat kecil sekali bahkan tidak terjadi sama sekali. Cahaya pada proses fotosintesis berfungsi dalam mengaktifkan enzim rubisco, yang dalam kasus ini semakin tinggi intensitas cahaya, semakin tinggi enzim rubisco yang dihasilkan, meningkatnya enzim rubisco yang aktif akan meningkatkan jumlah co2 yang ditambat yang berpengaruh pada meningkatnya hasil fotosintesis.
c) pengaruh intensitas cahaya terhadap ketebaan daun adalah daun yang mendapatkan intensitas cahaya yang tinggi akan memiliki ketebalan daun yang lebih tebal dibandingkan dengan daun yang mendapatkan intesitas cahaya yang rendah. Hal ini dpat dikarenakan pada daun yang mendapatkan intensitas cahaya yang tinggi akan menyebabkan kapasitas fotosintesis meningkat dan menyebabkan laju asimilasi pada daun ikut meningkat. Selain itu pada daun yang terkena intensitas cahaya yang tinggi akan membentuk lapisan palisade yang lebih panjang/lapisan palisade tambahan yang menybabkan menebalnya ketebalan daun.
d) pengaruh intensitas cahaya pada jumlah klorofil daun......

2. Pengaruh faktor suhu bagi laju respirasi tumbuhan sangat terkait dengan faktor Q10, dimana umumnya laju reaksi respirasi akan meningkat untuk setiap kenaikan suhu sebesar 10oC, namun hal ini tergantung pada masing-masing spesies. Q10 (temperature koefesient) merupakan interval peningkatan yang berpengaruh terhadap respirasi. Peningkatan respirasi berbanding lurus dengan peningkatan temperatur. Bagi sebagian besar bagian tumbuhan dan spesies tumbuhan, Q10 respirasi biasanya 2,0 sampai 2,5 pada suhu antara 5 dan 25°C. Bila suhu meningkat lebih jauh sampai 30 atau 35°C, laju respirasi tetap meningkat, tapi lebih lambat, jadi Q10 mulai menurun. Penjelasan tentang penurunan Q10 pada suhu yang tinggi ini adalah bahwa laju penetrasi O2 ke dalam sel lewat kutikula atau periderma mulai menghambat respirasi saat reaksi kimia berlangsung dengan cepat. Difusi O2 dan CO2 juga dipercepat dengan peningkatan suhu, tapi Q10 untuk proses fisika ini hanya 1,1 ; jadi suhu tidak mempercepat secara nyata difusi larutan lewat air. Peningkatan suhu sampai 40°C atau lebih, laju respirasi malahan menurun, khususnya bila tumbuhan berada pada keadaan ini dalam jangka waktu yang lama. Nampaknya enzim yang diperlukan mulai mengalami denaturasi dengan cepat pada suhu yang tinggi, mencegah peningkatan metabolik yang semestinya terjadi. Pada kecambah kacang kapri, peningkatan suhu dari 25 menjadi 45°C mula-mula meningkatkan respirasi dengan cepat, tapi setelah dua jam lajunya mulai berkurang. Kemungkinan penjelasannya ialah jangka waktu dua jam sudah cukup lama untuk merusak sebagian enzim respirasi. (Salisbury & Ross, 1995)
Suhu perpengaruh thdp sistem enzim yang mengkatalisis respirasi. Beberapa golongan tumbuhan menunjukkan respon yang berbeda terhadap perlakuan temperatur dalam jangka waktu pendek.
3. Pada tumbuhan, hasil fotosintesis diakumulasi dalam bentuk sukrosa atau pati sedangkan glukosa dan fruktosa konsentrasinya jauh lebih rendah.
Sukrosa: senyawa penting sebagai sumber energi pada sel fotosintetik dan ditranslokasikan melalui pembuluh floem trtm ke jaringan yang sedang tumbuh.
Sintesa sukrose di sitosol bukan di kloroplas; triose fosfat sebagai prekursor.
 Tempat gula dihasilkan disebut sebagai sumber gula (sugar source)
 Tempat gula disimpan atau dikonsumsi disebut sebagai sugar sink
 Contoh sugar sink: akar,ujung batang, buah yang sedang tumbuh, jaringan cadangan makanan,dll
Gula bergerak dari sugar source ke sugar sink dengan mekanisme aliran massa
Pada bagian sugar source:
Gula diangkut masuk ke tabung floem melalui transport aktif;
Konsentrasi larutan yang tinggi menarik air secara difusi
Pada bagian sugar sink:
Saat gula meninggalkan floem,
Air akan mengikuti keluar melalui osmosis.
Xilem akan mengangkut air kembali dr sugar sink ke sugar source.

Selasa, 01 November 2011

• BIOTEKNOLOGI
• Pengertian Bioteknologi
• Pemanfaatan organisme hidup untuk menghasilkan produk dan jasa yang bermanfaat bagi manusia
• PETA KONSEP
• Perbandingan Bioteknologi Konvensional dan Modern
• SEJARAH SINGKAT PERKEMBANGAN BIOTEKNOLOGI
• Ragi untuk pembuatan anggur (< 6000 SM) • Ragi untuk mengembangkan roti (± 4500 SM) • Tembaga ditambang dengan mikroba di Spanyol (< 1670) • Mikroba pertama kali dilihat oleh Leewenhoek (1680) • Mikroba perusak fermentasi ditemukan Louis Pasteur (1876) • Enzim diekstrak dari ragi dapat membuat alkohol ditemukan Eduard Buchner (1897) • Penemuan bakteri penghasil aseton, butanol, gliserol (± 1910) • Struktur rantai ganda ADN terungkap (1953) • Penemuan bakteri antibiotik baru : streptomisin, sefalosporin, dll (1953) • Mikroba digunakan menambang uranium di Kanada (1960-an) • Ditemukan ADN rekombinan dan percobaan rekayasa genetik pertama berhasil (1973) • Hibridoma menghasilkan antibodi monoklonal (1973) • Bahan mentah industri plastik dari mikroba, interferon untuk kanker (80-an) • Mikroba hasil rekayasa membantu mengekstrak minyak dari tanah mikroba secara luas digunakan untuk mengekstrak logam, produksi hidrogen dari bakteri, Antibodi monoklonal digunakan untuk menuntun obat anti kanker, membuat tanaman yang memupuk sendiri dan tanaman yang mampu menolak serangan hama sendiri, lewat rekayasa genetika (1990-an) • KULTUR JARINGAN • Adalah Teknik untuk memperoleh bibit tanaman dengan cara menumbuhkan sebagian jaringan tumbuhan dalam media khusus. • Teori yang melandasi teknik ini adalah teori totipotensi, • yang artinya setiap sel tumbuhan memiliki kemampuan • untuk tumbuh menjadi individu bila ditempatkan pada • lingkungan yang sesuai. • KULTUR JARINGAN • KULTUR JARINGAN • ALAT-ALAT UNTUK KULTUR JARINGAN • REKAYASA GENETIK • Adalah mengubah susunan gen untuk mengubah sifat organisme sehingga memiliki kemampuan yg diinginkan • Teknik Rekayasa genetik: • Fusi Genetik • Fusi protoplasma • Amplifikasi gen • Teknologi Rekombinasi Gen (DNA) • Pembuatan Hibridoma • FUSI GENETIK • Fusi genetik memungkinkan terjadinya pemin-dahan gen (transposisi)dari satu lokasi dalam kromosom ke lokasi yang lain. • Contoh: • Rekayasa terhadap bakteri Pseudomonas syringe yang menyebabkan tanaman tomat dan kentang tahan terhadap suhu beku dibawah -5oC • FUSI PROTOPLASMA Penyatuan dua protoplasma akan memungkin-kan dua sel bergabung dan diikuti penggabung-an materi genetiknya. Penggabungan proto-plasma dua jenis sel yang berbeda akan meng-hasilkan individu baru yang memiliki sifat gabungan kedua sel induk. Contoh: Fusi protoplasma pada bakteri Nocardia lactamdurans yang menghasilkan antibiotik cephalomycin. • REKOMBINASI GEN • Rekombinasi gen dilakukan dengan memotong DNA dan kemudian disambung dengan DNA baru yang membawa sifat unggul. • Tahap-tahap pembuatan DNA Rekombinan • 1 Mula-mula orang mencari DNA unggul, misalnya diambil dari makhluk hidup lain atau membuatnya. Orang pada saat sekarang sudah berhasil membuat DNA ini. • Menyiapkan wahana (vektor), yaitu alat untuk memasukkan DNA itu ke dalam makhluk hidup yang akan diubah sifatnya. Wahana biasanya berupa virus atau plasmid dari bakteri. Plasmid adalah DNA yang bentuknya melingkar, terdapat di luar DNA inti bakteri. DNA plasmid mampu keluar masuk sel dan bisa bergabung dengan kromosom sel organisme lain. • Memasukkan DNA rekombinan ke dalam sel. • Kloning (perbanyakan) DNA rekombinan. DNA yang sudah dimasukkan ke dalam sel, diperlakukan sedemikian rupa sehingga bakteri yang dimasuki DNA itu menggan-dakan DNA tersebut di dalam selnya. • Kloning (perbanyakan) DNA rekombinan. DNA yang sudah dimasukkan ke dalam sel, diperlakukan sedemikian rupa sehingga bakteri yang dimasuki DNAitu menggan-dakan DNA tersebut di dalam selnya. • PROSES REKOMBINASI DNA • ORGANISME HASIL REKAYASA GENETIK • DAMPAK POSITIF BIOTEKNOLOGI • Peningkatan produksi pangan • Peningkatan kesehatan • Penyedia bahan bakar alternatif • DAMPAK NEGATIF BIOTEKNOLOGI • Di bidang Etika/ Moral o Ada masyarakat yang menganggap bahwa menyisipkan gen suatu MH ke MH berten-tangan dengan nilai budaya dan melanggar hukum alam • Di bidang sosial ekonomi o Menimbulkan kesenjangan antara negara/ perusahaan yang memanfaatkan biotekno-logi dengan yang belum memanfaatkan bioteknologi (negara dunia ke tiga) • Dampak di bidang kesehatan o Ada produk hasil rekayasa genetik yang disinyalir menimbulkan masalah serius, misalnya kematian akibat penggunaan insulin, sapi penghasil susu yang disuntik dengan Hormon BGH mengandung bahan kimia yang berbahaya, tomat Flavr Savr diketahui membawa gen resisten terhadap antibiotik. • Dampak terhadap lingkungan o Pelepasan organisme transgenik ke alam dapat keseimbangan alam dan kelestarian organisme. Bioplastics Produced by Microorganisms Importance 2003- North America 107 billion pounds of synthetic plastics produced from petroleum Take >50 years to degrade
Improper disposal and failure to recycle  overflowing landfills


Degradable polymers that are naturally degraded by the action of microorganisms such as bacteria, fungi and algae
Carbon Cycle of Bioplastics
Polyhydroxyalkanoates (PHAs)
Polyesters accumulated inside microbial cells as carbon & energy source storage
Polyhydroxyalkanoates (PHAs)
Produced under conditions of:
Low limiting nutrients (P, S, N, O)
Excess carbon
"Bacterial Polyester"
Polyhydroxybutyrate (PHB)
Example of short-chain-length PHA
Produced in activated sludge
Found in Alcaligenes eutrophus
Accumulated intracellularly as granules (>80% cell dry weight)
PHA Biosynthesis
phbC-A-B Operon in A. eutrophus
Structural genes encoded in single operon
PHA synthase
-ketothiolase
NADPH-dependent acetoacetyl-CoA reductase

PHB biosynthesis
PHB-Cycle
Production of PHA in Bacteria
PHAs
PHA-Synthesis in Bakteri vs Transgenic Plants
Accumulation of PHA in transgenic A. thaliana

Synthesis of PHBV-Copolymers in Plants
Bioplastics
Recovery of PHAs from Cells
PHA producing microorganisms stained with Sudan black or Nile blue
Cells separated out by centrifugation or filtration
PHA is recovered using solvents (chloroform) to break cell wall & extract polymer
Purification of polymer
Bioplastic Properties
Some are stiff and brittle
Crystalline structure  rigidity
Some are rubbery and moldable
Properties may be manipulated by blending polymers or genetic modifications
Degrades at 185°C
Moisture resistant, water insoluble, optically pure, impermeable to oxygen
Must maintain stability during manufacture and use but degrade rapidly when disposed of or recycled
Biodegradation
Fastest in anaerobic sewage and slowest in seawater
Depends on temperature, light, moisture, exposed surface area, pH and microbial activity
Degrading microbes colonize polymer surface & secrete PHA depolymerases
PHA  CO2 + H2O (aerobically)
PHA  CO2 + H2O + CH4 (anaerobically)
Biodegradation by
PHA depolymerases
Controlled Degradation


Agriculture Biotechnology
What Is Biotechnology?
Using scientific methods with organisms to produce new products or new forms of organisms
Any technique that uses living organisms or substances from those organisms to make or modify a product, to improve plants or animals, or to develop microorganisms for specific uses
What Is Biotechnology?
GMO- genetically modified organisms.
GEO- genetically enhanced organisms.
With both, the natural genetic material of the organism has been altered.
Roots in bread making, wine brewing, cheese and yogurt fermentation, and classical plant and animal breeding
What Is Biotechnology?
Manipulation of genes is called genetic engineering or recombinant DNA technology
Genetic engineering involves taking one or more genes from a location in one organism and either
Transferring them to another organism
Putting them back into the original organism in different combinations
Genetic Engineering
Manipulating an organism’s genome to
alter microbes, plants, and animals for our benefit
correct genetic defects in humans
Genetically Modified Organisms
Herbicide-resistant plants
Bt cotton/corn (toxin gene from Bacillus thuringiensis that kills insects)
Flavr-Savr tomatoes
Golden rice (beta-carotene)
Plant-based vaccines
Golden Rice- Agrobiotech
Golden rice is the result of an effort to develop rice varieties that produce provitamin-A (beta-carotene) as a means of alleviating vitamin A (retinol) deficiencies in the diets of poor and disadvantaged people in developing countries. Because traditional rice varieties do not produce provitamin-A, transgenic technologies were required.


Insect Resistance
B. thuringiensis (commonly known as 'Bt') is an insecticidal bacterium, marketed worldwide for control of many important plant pests - mainly caterpillars of the Lepidoptera (butterflies and moths) but also mosquito larvae, and simuliid blackflies that vector river blindness in Africa. Bt products represent about 1% of the total ‘agrochemical’ market (fungicides, herbicides and insecticides)

Agrobacterium tumefaciens
Agrobacterium tumefaciens causes crown gall disease by first transferring part of its DNA into an opening in the plant. The DNA then integrates itself into the plant's genome and causes the formation of the gall.

Crown Gall – Plant tumor



How Does Agrobacterium Gene Transfer Work?
Extract DNA from donor
Cut DNA into fragments
Sort DNA fragments
Recombine DNA fragments
Transfer plasmids with bonded DNA
Grow transformed (recipient) cells
Agrobacterium tumefaciens

Vaccines
Bananas have potential to become the world's first edible vaccine due to Agrobacterium. An edible vaccine doesn't need sterile syringes, costly refrigeration, or multiple injections. According to the World Health Organization (WHO), more than 2 million children die worldwide each year from diarrhea that can be prevented easily with vaccines. Thus, researchers lead by Dr. Charles Arntzen are looking into making the food vaccines to prevent diarrhea caused by Escherichia coli and Vibrio cholara bacteria.

pGlo – Gfp
Green fluorescent protein

Fluorescent
In the laboratory, fluorescence is easily achieved by exposing the protein to long range UV light or “ black" light.
The fluorophore absorbs light in the UV-B region (395 nm.. plus a smaller absorbance peak at 470 nm)
It emits light (fluoresces) at 509 nm, which is in the green part of the visible spectrum

Gfp and Land Mines
Neal Stewart at the University of North Carolina is developing plants that can detect land mines
Plants could be ideal biosensors for land mines as seeds would be spread widely and evenly in a suspect field
The gene that can announce the presence of land mines is gfp
The gene will be expressed in the presence of a land mine


What is Agriscience?
Agriculture - The production, processing, and marketing of food, fiber, and renewable natural resources.
Production involves the actual producing of the food and fiber, this are includes all of the inputs necessary for production and all of the production labor.
Grain, Livestock, and Fruit Farming
Chemicals, fertilizers, & supporting agribusiness
What Are Methods of Classical Biotechnology?
Plant breeding methods;
Line breeding- breeding successive generations of plants among themselves
Crossbreeding- breeding plants of different varieties or species
Hybridization- breeding individuals from two distinctly different varieties
Selection
Why Are Plants Genetically Engineered?
Resist pests
Resist herbicides
Improved product quality
Pharmaceuticals
Industrial products
What Is Composting?
Composting- a process that promotes biological decomposition of organic matter
Compost bin- a facility that contains materials for composting
In-vessel composting- using enclosed containers for composting